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a b s t r a c t

Introduction: Intelligent noise reduction (INR), a deep learning-based noise reduction developed by
Canon, is used in planar radiography to improve image quality and reduce patient exposure dose. This
study aimed to evaluate the reduction of patient exposure dose in planar chest radiography using INR.
Methods: We evaluated the visibility of a Lungman phantom with tumor inserts by mean opinion score
(MOS) to evaluate the optimal imaging conditions for INR. Furthermore, the optimal imaging conditions
for INR were verified through retrospective evaluation using clinical images and the image quality was
evaluated by blind/referenceless image spatial quality evaluator (BRISQUE). The individuals were the
same 100 patients who had planar chest X-rays taken without INR and with INR, designated as the
control and evaluation groups, respectively. Imaging conditions with automatic exposure control in the
evaluation group set the radiation dose 32 % lower than that for the control group. The BRISQUE and
entrance surface dose (Ka;e) in each group were compared.
Results: Regarding the visibility of the simulated mass, there was no significant difference in MOS when
the reference dose was reduced by 33.33 % (p ¼ 0.26). In retrospective evaluation of clinical images,
BRISQUE in the control and evaluation groups was 34.35 ± 4.19 and 34.46 ± 4.58 (p ¼ 0.35), respectively.
The Ka;e in the control and evaluation groups were 0.131 ± 0.039 and 0.084 ± 0.024 mGy (p < 0.001).
Conclusion: INR reduced patient exposure dose by an average of 35 % without decreasing image quality.
Implications for practice: These results indicate that INR can contribute to the reduction of patient ra-
diation dose during chest radiography. The widespread use of this technology may reduce dose indices,
including diagnostic reference levels.
© 2025 The Authors. Published by Elsevier Ltd on behalf of The College of Radiographers. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Owing to the development of various types of imaging diag-
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patient exposure doses from imaging diagnostics and treatments
using radiation are on the rise,1 raising regional concerns. The In-
ternational Commission on Radiological Protection (ICRP) has
proposed diagnostic reference levels (DRLs) to optimize medical
radiation,2 which are used across various countries and regions.
Roch et al. reported that the spread of flat panel detectors reduced
the 75th percentile value of the dose area product in chest radi-
ography by 27.4 %.3 Therefore, the widespread use of new tech-
nology has the potential to considerably reduce patient exposure
doses.

Recent advances in science and technology have led to efforts to
apply artificial intelligence (AI) in medical imaging. The range of AI
applications in medical imaging is broad and includes lesion
detection,4 survival time prediction,5 and image quality improve-
ment.6 One notable application is deep learning for noise reduction,
which is included in various image diagnostic equipment and used
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in clinical settings. Additionally, in positron emission tomography
and magnetic resonance imaging, the usefulness of improving
image quality through noise reduction processing using deep
learning has been reported.7,8 In computed tomography (CT), deep
learning-based image reconstruction has been shown to reduce
radiation exposure by approximately 48 % compared to hybrid
iterative reconstruction,9 and by more than 50 % compared to
filtered back projection.10 For planar X-ray imaging, intelligent
noise reduction (INR), a noise-reduction process that uses deep
learning, has been developed and is now used in clinical settings.
INR is a deep learning-based noise reduction process developed by
Canon that uses a large number of clinical images as training data to
enable significant noise improvement without reducing the reso-
lution characteristics of the image. Only vendors are allowed to
select and add training data, while users can change the intensity of
noise reduction processing using ten different levels.11

In the physical evaluation, no loss of modulation transfer func-
tion (MTF) was observed when the MTF of INR was compared with
that of the original image.11 Furthermore, in conventional noise
reduction (cnvNR), the removed noise components include some
signals that constitute the image. However, INR has been reported
to alleviate this problem.11 In a study presenting clinical use of INR,
Hussner et al. reported the possibility of reducing patient exposure
dose with INR in adult plain pelvic radiography.12 However, few
studies have evaluated the image quality of clinical planar X-ray
images of adults using INR, and the optimization of the imaging
dose has not been adequately verified. This study aimed to deter-
mine the optimal imaging conditions for chest X-ray imaging using
deep learning-based noise reduction and to evaluate the reduction
rate of patient radiation dose by noise reduction processing based
on deep learning.

Method

INR uses Canon's original convolutional neural network (CNN)
optimized for the detector. By optimizing the number of calcula-
tions while maintaining network complexity, images can be pro-
cessed in a shorter time interval while delivering higher
performances. Fig.1 shows the image processing process of the INR.

Equipment and materials

Images were acquired using an indirect flat panel detector CXDI-
410C (Canon Medical Systems, Japan), X-ray tube equipment DRX-
3724HD (Canon Medical Systems), X-ray generator KXO-80SS
(Canon Medical Systems), an anti-scatter grid MS X-RAY GRID
(Mitaya Manufacturing, Japan), and a chest phantom N-1 LUNG-
MAN (Kyoto Kagaku, Japan). The anti-scatter grid had a focusing
distance of 180 cm, grid density of 52 lines/cm, grid ratio of 10:1,
and an intermediate aluminummaterial. The entrance surface dose
was measured using an electrometer EMF521A (EMF, Japan) and an
ionization chamber dosimeter (DC300 type, 3 cm3

fingertip type;
IBA Dosimetry, Germany). We used RadiForce GS521 (EIZO,
Japan)da 5 MP medical image display monitordfor the subjective
evaluation. Python 3.12 was used to build the system for per-
forming no-reference image quality assessment of clinical images.

Verification of imaging conditions using phantom images

Acquisition of evaluation images
We verified whether the INR imaging conditions used in clinical

practice were appropriate by using phantom images containing
simulated tumors. The imaging conditions for obtaining phantom
images were determined by planar chest X-ray imaging. The
reference image was a chest phantom acquired using cnvNR with
2

default automatic exposure control (AEC) settings. A chest phantom
image with a cnvNR effect of 10 obtained under the imaging con-
ditions of a tube voltage of 125 kV, tube current of 200 mA, tube
currentetime product of 2.4 mAs, and source-to-image receptor
distance (SID) of 200 cmwas used as the reference image. The chest
phantom contained simulated tumors 10mm in diameter with a CT
value of þ100 in the lung field and mediastinum. Chest phantom
images with an INR effect of 10 obtained under the tube
currentetime product of 0.8 mAs, 1.2 mAs, 1.6 mAs, and 2.0 mAs
were used as the evaluation images. The simulated tumors in each
evaluation image were at a fixed position. The reference value for
the tube current time product was 2.4 mAs (i.e., dose reduction rate
0 %). The evaluation images were reduced in steps of 0.4 mAs,
reducing the radiation dose by a maximum of 66.7 %. Fig. 2 shows a
planar chest radiograph of the simulated tumor. Table 1 shows the
image acquisition conditions used for the tumor evaluation.
Subjective evaluation
For the subjective evaluation, the confidence rating method was

used to evaluate the visibility of tumors on planar chest images. The
visual evaluation was performed on the five acquired phantom
images. The evaluators received training in advance to ensure the
uniformity of the criteria. The simulated tumors in the lung field
and mediastinum were magnified and visually evaluated. We
attempted to limit repeated evaluation of images. We also defined
the magnification size for observing the simulated tumor (2.00�
magnification) and restricted enlarging, reducing, and changing the
image contrast, image density, and other image processing. Fig. 3
shows the images used for the visual evaluation. The visibility of
tumors on planar chest images was evaluated using a 5-point scale
(5; excellent, 4; good, 3; fair, 2; poor, 1; bad) using the mean
opinion score (MOS). Table 2 lists the evaluation criteria for MOS.
The visual evaluators were 12 radiological technologists (2e22
years in charge, average± standard deviation: 10.75 ± 6.49 years) in
charge of general radiography. Significant differences between
reference and evaluation image were calculated using steel's mul-
tiple comparison test with reference to theWilcoxon rank-sum test.
Statistical significance was set at p < 0.05.
Retrospective evaluation of clinical images

No-reference image quality assessment
We used a blind/referenceless image spatial quality evaluator

(BRISQUE) for image quality assessment of clinical images. BRISQUE
is based on an algorithm that mimics human visual sensations and
has been reported to intuitively assess image quality.13 For this
reason, it is expected that the image quality score obtained by
BRISQUE will correlate with human visual assessment. BRISQUE
extracts features from images and estimates image quality based on
local statistical information of the image. The algorithm evaluates
image quality with a score from 0 to 100, with smaller values
indicating higher image quality.14 Since BRISQUE is an image
quality assessment method based on supervised learning using a
support vector machine, the mean subtracted contrast normalized
to the training data and the corresponding MOS were used for
training. Three hundred normal adult chest X-ray images were used
as the training data for BRISQUE. The training data were planar
chest X-ray images obtained during a screening test judged by two
radiologists to have no lesions. The participants were 150 men and
150 women, with a mean age of 55.02 ± 16.81 years. The AEC set
the imaging conditions with a tube voltage of 125 kV, SID of
200 cm, and tube currentetime product of 1.2e8.2 mAs. Fig. 4
shows the flow of the BRISQUE analysis.



Figure 1. Process of INR image processing. INR, intelligent noise reduction.

Figure 2. Planar chest radiograph of the simulated tumor.
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Subject of retrospective evaluation
The optimal INR imaging conditions were verified through a

retrospective evaluation of clinical images, inwhich the AEC setting
value changed depending on INR presence or absence. This study
was conducted with the approval of the ethical review board of our
institution. As patient data was anonymized in this study, the
institutional review board of our institution waived patient con-
sent. The participants in the evaluation were the 100 patients (50
men and 50 women; mean age, 60.33 ± 14.02 years), who under-
went planar chest radiography using cnvNR and INR from
September 2023 to March 2024 and were designated as the control
and evaluation groups, respectively. Inclusion criteria for this study
were adult patients with a chest radiograph done using cnvNR and
INR during the evaluation period. These individuals were randomly
selected. Furthermore, these 100 individuals were different from
Table 1
Imaging conditions for simulated tumor evaluation.

Evaluation image 0.8 mAs (INR) 1.2 mAs (INR)

Radiation dose reduction rate (%) 66.7 50.0
INR þ þ

INR: intelligent noise reduction, cnvNR: conventional noise reduction.
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the 300 patients who were part of the training data used for
BRISQUE analysis. Although the individuals had a variety of lesions,
images that showed changes in the patient's condition during the
study period, such as disease progression or medical device inser-
tion, were excluded from the study. The radiation dose setting us-
ing AEC can be changed in 16 % increments, and the AEC setting for
the evaluation group was set to reduce the radiation dose by 32 %
compared to the control group. Additionally, we have restricted the
modification of these settings.

Patient radiation dose assessment
The imaging device used in this study was not equipped with a

dose area product meter. Therefore, imaging conditions were
retrospectively compiled from the digital imaging and communi-
cations inmedicine information attached to the clinical images. The
entrance surface doses (Ka;e) of the evaluation and control groups
were measured using a phantom.15 The measurement point was
constant and was performed using an ionization chamber dosim-
eter based on the acquired imaging conditions. Fig. 5 shows the
geometric arrangement for dosimetry. Significant differences in the
Ka;e between the evaluation and control groups were calculated
using paired t-test. The Ka;e in the chest phantom determined as
follows:

Ka;e ¼Kair �
�
SCD
SSD

�2
� BSF (1)

where Kair indicates absorbed dose corrected with correction fac-
tors, SCD indicates the distance from the X-ray tube focus to the
chamber, SSD indicates the distance from the X-ray tube focus to
the phantom surface, and BSF indicates the backscatter factor
calculated from X-ray energy and X-ray field size.16 The measure-
ments were repeated 10 times, and the average value was used. Kair
was corrected as follows:
1.6 mAs (INR) 2.0 mAs (INR) 2.4 mAs (cnvNR)

33.3 16.7 0
þ þ e



Figure 3. Simulated tumor images for visual evaluation. INR, intelligent noise reduction; cnvNR, conventional noise reduction.

Table 2
MOS used for visibility of simulated tumor.

MOS (visibility of simulated tumor)

5 Excellent Clear
4 Good Somewhat clear
3 Fair Slightly unclear but observable
2 Poor Unclear and difficult to observe
1 Bad Not observable

MOS: mean opinion score.

Figure 4. Flow of the BRISQUE analysis. BRISQUE, blind/referenceless image spatial
quality evaluator; SVM, support vector machine; MSCN, mean subtracted contrast
normalized; MOS, mean opinion score.

Figure 5. Geometric arrangement for dosimetry. SCD, source-to-chamber distance;
SSD, source-to-surface distance.
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Kair ¼Kair � kTP (2)

where Kair indicates display absorbed dose, KTP indicates temper-
ature and pressure correction coefficient.
Image quality assessment
The quality of planar chest radiographs from the control and

evaluation groups was evaluated using BRISQUE. Significant
4

differences between evaluation and control groups were calculated
using paired t-test.

Results

Fig. 6 shows the MOS for visibility evaluation of tumors in the
lung field, whereas Fig. 7 shows the MOS for visibility evaluation of
tumors in the mediastinum. When the radiation dose for chest
images using INR was reduced by 50 % compared to the cnvNR
images, the MOS for tumor visibility decreased significantly
(p¼ 0.024). Conversely, a 33 % reduction in radiation dose using INR
did not result in a significant difference in MOS for tumor visibility
(p ¼ 0.26).

Fig. 8 shows the evaluation of BRISQUE in the clinical images.
The BRISQUE of the control and evaluation groups were
34.35 ± 4.19 and 34.46 ± 4.58 (p ¼ 0.35), respectively. The BSF used
for the Ka;e measurement was 1.54. Fig. 9 shows the evaluation of
Ka;e in the clinical images. The Ka;e of the control and evaluation
groups were 0.131 ± 0.039 mGy and 0.084 ± 0.024 mGy, respec-
tively, and the Ka;e was significantly reduced by using INR
(p < 0.001).

Discussion

In the visibility evaluation of phantom images, no significant
difference in the visibility of the simulated tumor in the lung field



Figure 6. MOS for visibility evaluation of tumors in the lung field. MOS, mean opinion
score; INR, intelligent noise reduction; cnvNR, conventional noise reduction.

Figure 7. MOS for visibility evaluation of tumors in the mediastinum. MOS, mean
opinion score; INR, intelligent noise reduction; cnvNR, conventional noise reduction.

Figure 8. Evaluation of BRISQUE in the clinical images. BRISQUE, blind/referenceless
image spatial quality evaluator; INR, intelligent noise reduction; cnvNR, conventional
noise reduction.

Figure 9. Evaluation of Ka;e in the clinical images. Ka;e , entrance surface dose; INR,
intelligent noise reduction; cnvNR, conventional noise reduction.
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was observed between the INR image with 50 % reduction in the
radiation dose and the cnvNR image under standard imaging con-
ditions. However, in the mediastinum, where noise was noticeable,
unclear structure was observed in the simulated tumor in the INR
image obtained by reducing the radiation dose by 50 % from the
5

standard imaging conditions, and visibility was significantly
reduced. It was suggested that it was difficult to restore the original
structure even using INR in images with too much noise. The
simulated tumor in the INR image, which was reduced by 33.33 %
from the reference dose, did not show a significant difference in
MOS. The AEC setting could be changed in 16 % increments of
irradiation time. Therefore, the imaging conditions in which the
AEC setting value was reduced by 32 % from that in standard im-
aging conditions were considered appropriate for INR.

We used BRISQUE for the retrospective image quality evaluation
of clinical images. No significant difference was found between
cnvNR and BRISQUE assessments for planar chest X-ray images
using INR in the retrospective image quality evaluation of clinical
images. The average Ka;e for chest X-ray using INR was approxi-
mately 35 % lower than the Ka;e of chest X-ray using cnvNR, and
patient radiation dose was significantly reduced. Moreover, ICRP
Publication 135 recommends optimizing the imaging dose for each
modality in each country and region using DRLs.17 The target of the
current study was Japan; in Japan, Japan DRLs 2020 is used, and the
DRL value of chest X-ray is set as Ka;e at 0.30 mGy.18 Themedian Ka;e

of chest X-ray using INR was 0.084 mGy, suggesting that by using
INR, it is possible to acquire chest X-ray images at a dose of
approximately 28 % of the DRL value defined by Japan DRLs without
degrading the image quality. The CNN used in INR is trained to
remove noise by considering the frequency characteristics of noise
at all dose levels and reproducing the frequency characteristics of
noisewith tens of millions of input patterns.11 INRmakes it possible
to reduce the noise without reducing the signal in the structures.
Therefore, in the quality evaluation of clinical images, image quality
was maintained even when the radiation dose was reduced. Chest
X-ray is reported to be the most frequently performed X-ray ex-
amination in many countries.19 Additionally, given that chest X-ray
affects multiple organs with high radiation sensitivity, the reduc-
tion of patient radiation dose during chest X-ray using INR is a
notable contribution to medical care.

Among the limitations of this study is the use of INR: a deep
learning-based noise reduction technology manufactured by
Canon. INR uses a large number of clinical images set by the vendor
as training data to reduce noise in the images. Therefore, increasing
the number and variety of training data may enable further
reduction of noise as well as a reduction in patient radiation dose.
Furthermore, this study was limited to adult planar chest X-ray
images. Future studies should explore whether similar dose re-
ductions can be achieved in other imaging regions and verify the
appropriateness of radiation dose reduction for the different clin-
ical imaging conditions of each imaging site.
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Conclusion

The study identified the optimal imaging conditions for planar
chest X-ray imaging using deep learning-based noise reduction.
This technique maintains the same visibility as conventional noise
reduction processing and can reduce patient radiation exposure
dose by an average of 35 %. Noise reduction processing based on
deep learning enables planar chest X-ray imaging at a dose of
approximately 28 % of the DRL value defined by the Japanese DRLs.
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